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1 Introduction

The idea of holography has played central roles in recent developments of string theory. Holog-
raphy claims that the degrees of freedom in (d + 2)-dimensional quantum gravity are comparable
to those of quantum many body systems in (d+1)-dimensions [1]. This was essentially realized by
remembering the Bekenstein-Hawking (BH) formula:

SBH =
Area(Σ)

4GN
(1.1)

where SBH is the black hole entropy, Σ is the event horizon, and GN is the Newton constant. Owing
to the the discovery of AdS/CFT correspondence [2], we know explicit examples of holographies
where the quantum gravity on (d+ 2)-dimensional anti-de Sitter spacetime (AdSd+2) is equivalent
to a certain conformal field theory in (d+ 1)-dimensions (CFTd+1).

It has been pointed out for more than 20 years that the black-hole entropy (1.1) shares similarities
with an entanglement entropy SA [3, 4]. Here, A is the space-like submanifold on a constant time
slice Σ. Indeed, in d-dimensional free field theories, we can show that the leading divergent terms
of SA in the UV limit ϵ → 0 obey the area law:

SA = γ
Area(∂A)

ϵd−1
+ · · · (1.2)

where γ is the coefficient that depends on the system, but not on A, and ∂A is the boundary of A
in the constant time slice Σ, i.e. ∂A = Σ \ A. In quantum field theory, the entanglement entropy
is always divergent, so we needed to introduce a UV cutoff ϵ. The equation (1.2) means that
the entanglement entropy is not an extensive quantity as opposed to the thermodynamic entropy.
This is consistent with the intuition that the divergence would be proportional to the number of
EPR pairs that straddle the entangling surface. Actually, the original motivation to study the
entanglement entropy was its similarity to the BH entropy [3, 4].

Getting intuition from this area law (1.2), Ryu and Takayanagi generalized the Bekenstein-
Hawking formula (1.1) in the context of CFT with the use of AdS/CFT correspondence:

SA =
Area(γA)

4Gd+2
N

(1.3)
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Figure 1: (a) Schematic of the AdS/CFT correspondence, where the Poincare metric with radius
R is assumed: ds2 = R2(dz2 − dx20 +

∑d
i=1 dx

2
i )/z

2. Conformal field theory lives at z = ϵ, where ϵ
is the UV cutoff. (b) Schematic of the minimal surface γA in the AdS/CFT picture drawn in (a).
Here, Ac is the compliment of A.

where γA is the d-dimensional minimal surface whose boundary is given by (d − 1)-dimensional
manifold ∂γA = ∂A, and Gd+2

N is the Newton constant of the general gravity in AdSd+2. The
equation (1.3) is called the Ryu-Takayanagi (RT) formula [5]. Since the minimal surface tends
to wrap the horizon in the presence of event horizon, RT formula (1.3) can be regarded as a
generalization of the well-known BH formula (1.1).

In the original paper in 2006 [5], the authors gave a prescription for static time-independent
situations. This prescription was subsequently generalized by Hubeny, Rangamani, and Takayanagi
(HRT) in [6] to general states, including arbitrary time dependence. In this review, we will restrict
ourselves to the discussion of time-independent situations. The generalization the the arbitrary time
dependence can be achieved by nontrivial arguments considering Cauchy slice instead of constant
time slice.

The Ryu-Takayanagi formula (1.3) provides an interesting insight into the AdS/CFT correspon-
dence. The formula answers which region of AdS space is responsible to particular information
in the dual CFT. Entanglement entropy is a useful universal viewpoint, since it does not depend
on the details of theories such as specific operators or Wilson loops etc. In addition, the formula
provides a useful tool for studying quantum many-body phases in condensed matter physics. For
example, the fractional quantum Hall effect and quantum magnets on some geometrically frus-
trated lattices cannot be characterized by classical order parameters of some kind. These phases
look featureless when one looks at correlation functions of local operators. Thus, the entanglement
entropy is potentially useful to characterize these exotic phases.

When making use of the AdS/CFT correspondence, for example when calculating an entanglement
entropy in condensed matter physics using a dual gravity theory, we need to pay attention that

2



the gravity theory which is dual to the CFT is a general relativity plus quantum correction. But
fortunately, in a certain limit, the quantum correction becomes negligible. The limit is expressed
in terms of two parameters of CFT: λ → ∞, ceff → ∞. Here, λ is the coupling constant and ceff is
the effective number of degrees of freedom. In the limit ceff → ∞, the number of degrees of freedom
are scaled to be large, and the string interactions become weak. Then one can truncate to the tree
level result. Furthermore, in the limit λ → ∞, the classical string dynamics truncates to classical
gravitational dynamics of the general relativistic form. In this limit, the massive string states in the
dual description become heavy and decouple, leaving only the dynamics of semiclassical gravity.
We will see that this holographic map simplifies dramatically the computation of entanglement
entropy.

In the following, most of the work is based on the combination of two review articles [7, 8].

2 Entanglement Entropy

2.1 Entanglement Entropy in QFT

Let us define the entanglement entropy in a quantum field theory. If we start from a lattice
model, where each lattice cites α have a finite-dimensional Hilbert space Hα, a pure quantum state
of the system is an element of the tensor product Hilbert space:

|Ψ⟩ ∈ ⊗αHtot = Hα (2.1)

Then the density matrix of a pure state is expressed as

ρtot = |Ψ⟩ ⟨Ψ| . (2.2)

The von Neumann entropy of the total system is clearly zero Stot = −trρtotlogρtot = 0. Now we
imagine to divide the total system into two subsystems A and Ac. Accordingly the total Hilbert
space can be written as a direct product of two spaces Htot = HA⊗HAc . The observer who is only
accessible to the subsystem A will feel as if the total system is described by the reduced density
matrix ρA:

ρA = trAcρtot (2.3)

where the trace is taken only over the Hillbert space HAc . Now we define the entanglement entropy
of the subsystem A as the von Neumann entropy of the reduced density matrix ρA:

SA = −trAρAlogρA (2.4)

This quantity provides us with a convenient way to measure how closely entangled a given wave
function |Ψ⟩ is. Although the separation of the constant time slice Σ into A and Ac is rather
artificial here, we notice that the subsystem Ac is analogous to the inside of a black hole horizon
for an observer sitting in A, i.e., outside of the horizon.

It is also possible to define the entanglement entropy SA(β) at finite temperature T = β−1. This
can be done just by replacing (2.2) with the thermal one

ρthermal = e−βH (2.5)
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where H is the total Hamiltonian.

It is also convenient to define another set of entropies called the Rényi entropies, which are simply
defined in terms of the moments of the reduced density matrix:

S
(q)
A =

1

1− q
log trA(ρ

q
A) (2.6)

The definition here requires q ∈ Z+, but we will see that oftentimes it is convenient to analytically
continue the definition to q ∈ R+. This is especially useful when we use replica trick for computing
entanglement entropy. The key point to note is the fact

SA = lim
q→1

S
(q)
A . (2.7)

2.2 Properties of the Entanglement Entropy

There are several useful properties that the entanglement entropy enjoys generally. Some of them
are especially important in the context of Ryu-Takayanagi formula, so we will list them up in the
following:

• Strong subadditivity relation:

SA+B+C + SB ≤ SA+B + SB+C (2.8)

SA + SC ≤ SA+B + SB+C (2.9)

These are the most powerful inequalities obtained so far with respect to the entanglement
entropy.

• If the density matrix ρtot is pure such as in the zero temperature system, we have

SA = SAc (2.10)

This manifestly shows that the entanglement entropy is not an extensive quantity. This
equality is violated at finite temperature.

The proofs are given, for example, in the textbook [9].

2.3 Path Integral and Replica Trick

In the following, we will first construct a path integral that computes the matrix elements of
ρA. Then we will see how to compute the Rényi entropies by considering a functional integral on a
’branched cover’ geometry. By invoking an analytic continuum, we will finally get the entanglement
entropy with the use of the equation (2.7).

We wish to define ρA on a constant-time slice Σ when there is no non-trivial time evolution.
Since we are specifying a region A, let’s separate fields into two sets Φ(x) = {ΦA(x),ΦAc(x)}. Here
we note that the reduced density matrix acts as an operator on HA. Matrix elements of ρA can
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Figure 2: (a) Schematic of the Euclidean geometry for computing the matrix elements of the
reduced density matrix ρA. We have sketched the situation in two-dimensional Euclidean space
as indicated. The two cuts at A have been separated in an exaggerated manner to indicate the
boundary conditions we need to impose. (b) The n-sheeted Rieman surface Bn for the computation
of the product of the reduced density matrices (ρA)

q and the trace of it trAρA (arrow plus the
dashed arrow).

be defined by their action on fields supported in A. To see this, let us imagine regulating the path
integral by imposing boundary conditions for fields in A as follows:

ΦA|t=0− = Φ−, ΦA|t=0+ = Φ+ (2.11)

This is equivalent to cutting open the path integral in a restricted domain of space A at time
t = 0±, and projecting the result onto definite field values Φ±. [See figure 2(a)]. Thus, we can
write down the reduced density matrix ρA using path integral:

(ρA)−+ =

∫
[DΦ]e−SQFT [Φ]δE(Φ∓A)

δE(Φ∓A) ≡ δ(ΦA(t = 0−)− Φ−)δ(ΦA(t = 0+)− Φ+) (2.12)

We have constructed a functional integral to compute the matrix elements of ρA. The multipli-
cation of the reduced density matrices (ρA)

q is achieved by simply integrating over the boundary
conditions for the + component in the kth density matrix with the − component of the (k + 1)st

density matrix:

(ρA)
q
−+ =

∫ q−1∏
j=1

dΦ
(j)
+ δ(Φ

(j)
+ − Φ

(j+1)
− )×

[∫ q∏
k=1

[DΦ(k)]
{
e−

∑q
k=1 SQFT [Φ(k)]δE(Φ

(k)
∓A)

}]
. (2.13)

Here, the outer integral performs the desired identification of the reduced density matrix elements,
and the inner functional integral simply replicates the path integral which computes the individual
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Figure 3: Schematic of the CFT1+1 on R1,1. We consider a static case. The specified region A is
defined as A = {x|x ∈ (−a, a)} and the volume (length) of A is 2a.

matrix elements. [See figure 2(b)]. Now, we should view each copy of ρA as being computed on a
copy of the background spacetime B. Then, we now can compute the path integral of the theory by
integrating over all the fields living on the background Bq, which is constructed by taking q-copies
of these manifolds B and making identifications across them as prescribed by (2.13). We define Bq

as being
Zq[A] = trA(ρ

q
A) ≡ Z[Bq] (2.14)

Then we can rewrite the equation (2.6) as

S
(q)
A =

1

1− q
log

(
Zq[A]

Z1[A]q

)
=

1

1− q
log

(
Z[Bq]

Z[B]q

)
. (2.15)

We now have functional integrals that compute matrix elements of arbitrary integer powers of the

density matrix. Taking the trace, which now simply involves identifying Φ
(1)
− with Φ

(q)
+ for the

Euclidean computation, we get the Rényi entropies defined in (2.6).

2.4 A single interval in CFT1+1 on R1,1

Let’s try to compute the entanglement entropy in CFT1+1. To start with we will consider simple
static states for a CFT1+1 on R1,1. We will exploit the time independence to work in Euclidean
signature, mapping the background geometry to the complex plane C = R2. Consider the vacuum
state |0⟩ of the CFT1+1 on C. We pick an instant of time t = 0 and set A = {x|x ∈ (−a, a)}. What
is clear for the complex plane is that the cyclic gluing of q copies of that plane does not change the
topology, hence Bq is a genus-0 surface. we just have to deal with a function that is multi-branched.

As a first step, we are required to compute the partition function Z[Bq]. Since Bq is a genus-0
surface, we should be able to conformally map it back to the complex plane. We can start with
fields ϕ(x, t), which live on a single copy of the complex plane, and upgrade them to ϕk(x, t) with
k = 1, 2, · · · , q which live on the q-copies. The gluing conditions for constructing Bq can be mapped
to boundary conditions for the fields:

ϕk(x, o
+) = ϕk+1(x, 0

−), x ∈ A = {x|x ∈ (−a, a)} (2.16)

6



These boundary conditions can be equivalently implemented by passing from the basis of q-
independent fields to a composite field φ(x, t) living on B obeying twisted boundary conditions.
The map one seeks should thus implement the twists by the cyclic Zq replica symmetry. We are
no longer working with the original CFT but rather with the cyclic product orbifold theory.

One introduces then, as in any orbifold theory, a set of twist fields which implement the twisted
boundary conditions. The twists are by qth roots of unity, and the main property we need for the
twist operator Tq is that it induces a branch-cut of order q for the fields at its insertion point.
Standard orbifold technology reveals that the scaling dimension of the twist operator is

hq = h̃q =
c

24

(
q − 1

q

)
(2.17)

where c is the central charge. The main advantage of introducing these fields is that we can write
down the partition function of our theory on Bq in terms of correlation functions of the twist fields:

Z[Bq] =

q−1∏
k=0

⟨Tq(−a, 0)Tq(a, 0)⟩B (2.18)

where we used the subscript B to indicate that the correlation function is meant to be computed
on the original manifold. For our choice of A being a single connected interval, the above compu-
tation is very simple. Treating the twist fields as conformal primaries with scaling dimension given
by (2.17), we learn that

Z[Bq] =

(
2a

ϵ

)− c
6

(
q− 1

q

)
(2.19)

where we introduced a UV regulator ϵ to write down the correlation function. We now find the
Rényi entropy with the use of equation (2.15) as

S
(q)
A =

1

1− q
log

(
2a

ϵ

)− c
6

(
q− 1

q

)

=
c

6

(
1 +

1

q

)
log

(
2a

ϵ

)
(2.20)

In this simple case it is trivial to analytically continue from q ∈ Z+ to q ∼ 1. Thus, one clearly
obtains the following:

SA =
c

3
log

2a

ϵ
. (2.21)

3 Holographic Derivation of Entanglement Entropy

3.1 AdS dual of a single interval in CFT1+1 on R1,1

We would like to derive the entanglement entropy (2.21) holographically. To compute the
entanglement entropy in this situation using holographic formula (1.3), we need to find a geodesics
between the two points (x1, z) = (−a, ϵ) and (x1, z) = (a, ϵ) in the Poincaré coordinate

ds2 = R2dz
2 − dx20 + dx21

z2
. (3.1)
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Here dx20 = 0 because we are thinking of a static case and sitting on the constant-time slice.
Therefore the geodestic action can be written as

S = R

∫
dξ

√
x′(ξ)2 + z′(ξ)2

z
. (3.2)

Varying this action, one can check the resulting equations of motion are solved by half circle in the
xz plane.

(x, z) = a(cos ξ, sin ξ), (ϵ/a ≤ ξ ≤ π − ϵ/a) (3.3)

The length of γA can be found as

Length(γA) = 2R

∫ π/2

ϵ/a

dξ

sin ξ
= −2R log(ϵ/2a) = 2R log

2a

ϵ
(3.4)

Finally the entanglement entropy can be obtained as follows

SA =
Length(γA)

4G
(3)
N

=
R

2G
(3)
N

log
2a

ϵ
=

c

3
log

2a

ϵ
. (3.5)

Here in the third line, we used the relation given by the AdS/CFT correspondence

c =
3R

2G
(3)
N

. (3.6)

In evaluating the integral, we converted the UV cut-off z = ϵ into a restriction on the domain of
the affine parameter along the curve. The equation (3.5) is in consistent with the direct computa-
tion (2.21) in the CFT1+1 side. This is no coincidence! In both cases, the result is dictated purely
by the conformal symmetry and we have indicated that the result is universally determined simply
by the central charge.

3.2 Multiple Disjoint Intervals A

The computation of entanglement entropy for multiple disjoint intervals in a CFT is a formidable
task. However, the holographic answer however turns out to be very simple. Let us consider
A = ∪iAi with Ai = {x ∈ R|x ∈ (ui, vi)}. Then we can consider geodesics that connect the left
endpoint of one-interval, say Ai, with the right endpoint of any other Aj (including itself). The

length of such geodesics are simply proportional to 2log
|ui−vj |

ϵ . Then holographic answer is then
simplify

SA = min

 c

3

∑
(i,j)

log
|ui − vj |

ϵ

 (3.7)

with the sum running over all pairs of choices from which we pick the globally minimum result.
For instance, for two intervals, we have

SA = min

(
c

3
log

|u1 − v1|
ϵ

+
c

3
log

|u2 − v2|
ϵ

,
c

3
log

|u1 − v2|
ϵ

+
c

3
log

|u2 − v1|
ϵ

)
(3.8)

This is illustrated in figure 4.
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Figure 4: Sketch of the two potential extremal surfaces for a disjoint union of two regions A1 and
A2. We either have the union of the two individual extremal surfaces EA1 ∪ EA2 or surface EA1A2

which connects the two regions.

3.3 Holographic proof of Strong Subadditivity

We have seen in section 2.2 strong subadditivity relation which entanglement entropy holds. In
the context of AdS/CFT, we can prove these inequalities in a geometric manner.

Let us start with three regions A, B and C on a time slice of a given CFT so that there are
no overlaps between them. We extend this boundary setup toward the bulk AdS (see figure 5).
Consider the entanglement entropy SA+B and SB+C . In the holographic description 1.3, they are
given by the areas of minimal area surfaces γA+B and γB+C which satisfy ∂γA+B = ∂(A + B) and
∂γB+C = ∂(B + C). Then it is easy to see that we can divide these two minimal surfaces into
four pieces and recombine into (i) two surfaces EB and EA+B+C , or (ii) two surfaces EA and EC ,
corresponding to two different ways of the recombination. Here we meant EX is a surface which
satisfies ∂EX = ∂X. Since in general EX ’s are not minimal area surface, we have Area(EX) ≥
Area(γX). Therefore, we as we fan see from figure 5, this argument immediately leads to

Area(γA+B) + Area(γA+B) = Area(EB) + Area(EA+B+C) ≥ Area(γB) + Area(γA+B+C) (3.9)

Area(γA+B) + Area(γA+B) = Area(EA) + Area(EC) ≥ Area(γA) + Area(γC) (3.10)

4 Heuristic derivation of Holographic Formula

We have seen a simplest example of the Ryu-Takayanagi formula in the theory CFT1+1 on
R1,1. So let’s try to show the RT formula (1.3) now. In principle, we should be able to show the
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Figure 5: A holographic proof of the strong subadditivity of the entanglement entropy. To make
the figures simple, we project the slice of a (d+ 1)-dimensional AdS space onto a two-dimensional
plane. This simplification does not change our result.

holographic formula based on the first principle of the AdS/CFT correspondence known as the bulk
to boundary relation:

ZCFT = ZAdSGravity. (4.1)

In the CFT side, the entanglement entropy can be found if we can compute the partition function on
the (d+1)-dimensional n-sheeted space (2.14) via the formula (2.15). This spaceBq is characterized
by the presence of the deficit angle δ = 2π(1−q) on the surface ∂A. Then we need to find a (d+2)-
dimensional back reacted geometry Sq in the dual AdS space by solving the Einstein equation with
the negative cosmological constant such that its metric approaches to that of Bq at the boundary
z → 0. This is a technically complicated mathematical problem if we try to solve it directly.

To circumbent this situation, the following natural assumption is made [10]: the back reacted
geometry Sq is given by a q-sheeted AdSd+2, which is defined by puttingthe deficit angle δ localized
on a codimension two surface γA. Under this assumption, the Ricci scaler behaves like a delta
function

R = 4π(1− q)δ(γA) +R(0) (4.2)

where δ(γA) is a delta function localized on γA, and R(0) is the Ricci scaler of the pure AdSd+2.
Then we plug this in the supergravity action

log
(
Z

(q)
AdS

)
= − 1

16πG
(d+2)
N

∫
M

dx(d+2)√g(R+ Λ) + · · ·

= −4π(1− q)Area(γA)

16πG
(d+2)
N

− 1

16πG
(d+2)
N

∫
M

dx(d+2)√g(R(0) + Λ) + · · · (4.3)
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where we only make explicit the bulk Einstein-Hilbert action. Now we make use of the bulk to
boundary relation (4.1) to get

log(Z[Bq]) = log(Z
(q)
AdS) =

(1− q)Area(γA)

4G
(d+2)
N

+ (q-independent terms) (4.4)

With the use of equation (2.15), Rényi entropy becomes

S
(q)
A =

Area(γA)

4G
(d+2)
N

(4.5)

and therefore we get the desired holographic formula (1.3) with the use of the equation (2.7).

5 Other Examples of Holography

5.1 Holography in CFT1+1 on S× R

We have carefully discussed the theory of CFT1+1 on R1,1. Now let’s see the case on S × R
instead of R1,1. This situation is a compactified circle at zero temperature. The CFT1+1 side result
is given by [11, 5]

SA =
c

3
· log

(
L

πϵ
sin

(
πl

L

))
(5.1)

where l and L are the length of subsystem A and total system A∪Ac, respectively. Corresponding
AdS gravity dual has a metric

ds2 = R2(−coshρ2dt2 + dρ2 + sinhρ2dθ2) (5.2)

In this coordinate, UV cut-off condition is ρ ≤ ρ0. Here we have an approximate relation

eρ0 ∼ L/ϵ. (5.3)

The (1 + 1)-dimensional spacetime for the CFT1+1 is identified with the cylinder (t, θ) at the
boundary ρ = ρ0. The subsystem A is the region 0 ≤ θ ≤ 2πl/L. Then the minimal surface γA is
identified with the static geodesic that connects the boundary points θ = 0 and θ = 2πl/L, with t
fixed, traveling inside the cylinder. [See figure (6)].

With the cutoff introduced above, the geodesic distance Area(γA) is given by

cosh

(
Area(γA)

R

)
= 1 + 2sinh2ρ0sin

2πl

L
(5.4)

Assuming the large UV cutoff eρ0 ≫ 1, the equation (5.5) becomes

Area(γA) = R · log
(
e2ρ0sin2

πl

L

)
(5.5)
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Figure 6: Sketch of the CFT1+1 on S × R. The figures are cited from the original paper of Ryu
and Takayanagi [5].

With the use of Ryu-Takayanagi formula 1.3, we get

SA =
R

4G
(3)
N

log

(
e2ρ0sin2

πl

L

)
=

c

3
log

(
eρ0sin

πl

L

)
. (5.6)

Here, again we utilized the relation (3.6). Noticing the approximate relation (5.3), we realized that
this holographic entanglement entropy is in consistent with the direct computation result given
in (5.1).

5.2 Holography in infinite CFT1+1 at finite temperature

We consider CFT1+1 infinite system at finite temperature T = β−1 from the viewpoint of
AdS/CFT correspondence. It can be treated by applying the conformal map technique and analytic
formulas have been obtained [11, 5]:

SA =
c

3
· log

(
β

πϵ
sinh

(
πl

β

))
. (5.7)

We assume that the spacial length of the total system L is infinite, so we have β/L ≪ 1. In
such a high temperature region, the gravity dual of the conformal field theory is described by the
Euclidean Banados-Teitelboim-Zanelli (BTZ) black hole [12]. Its metric looks

ds2 = (r2 − r2+)dτ
2 +

R2

r2 − r2+
dr2 + r2dφ2. (5.8)

The Euclidean time is compactified as τ ∼ τ + 2πR
r+

to obtain a smooth geometry. We also impose
the periodicity φ ∼ φ+2π. By taking the boundary limit r → ∞, we find the relation between the
boundary CFT and the geometry:

β

L
=

R

r+
≪ 1 (5.9)

The subsystem A is the region 0 ≤ φ ≤ 2πl/L at the boundary. By extending the formula (1.3)
into asymtoptically AdS spaces, the entropy can be computed from the length of the space-like

12



Figure 7: (a) Minimal surfaces γA in the BTZ black hole for various size of ∂A. (b) γA and γB
wrap the different parts of the horizon. (c) When ∂A gets larger, γA is separated into two parts:
one is wrapped on the horizon and theother is localized near the boundary. All of the figure is cited
from [7].

geodesic starting from φ = 0 and ending at φ = 2πl/L at the boundary r = r0 → ∞ at fixed time.
This geodesic distance can be found analytically as

cosh

(
Area(γA)

R

)
= 1 +

2r20
r2+

sinh2
(
πl

β

)
(5.10)

The relation between the cut-off ϵ in CFT and the one r0 of AdS is given by r0
r+

= β
ϵ . Then we can

see that the CFT result (5.7) is achieved from the AdS part as well.

It is useful to understand the geometric meaning at finite temperatures. The geodesic line in the
BTZ black hole takes the form shown in figure 7(a). When the size of A is small, it is almost the
same as the one in the ordinary AdS3. However, as the size becomes large, the turning point of
the geodesic line approaches the horizon and eventually the geodesic line covers a part of horizon.
This is the reason why we find a thermal extensive behavior of the entropy when l/β ≫ 1 in
equation (5.7). The thermal entropy in a conformal field theory is dual to the black hole entropy
in its gravity description via the AdS/CFT correspondence. In the presence of a horizon, SA is
not equal to SAc since the corresponding geodesic lines wrap different parts of the horizon. [See
figure 7(b)]. This is a typical property of the entanglement entropy at finite temperatures. As
we discussed in section 2.2, at zero temperature, we have SA = SAc , but at finite temperatures,
genrerally SA ̸= SAc . Now we see this is due to the emergence of horizon in the dual AdS space!

We can also expect that when A becomes very large before it coincides with the total system,
γA becomes separated into the horizon circle and a small half circle localized on the boundary like
in the figure 7(c). In this situation, SA will get large contribution from the event horizon.

6 Summary

We have reviewed simple three theories where Ryu-Takayanagi holographic formula can be
easily checked: (i) CFT1+1 on R1,1, (ii) CFT1+1 on S × R, and (iii) infinite CFT1+1 at finite
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temperature. In addition, we reviewed geometric structure behind two of the important properties
of the entanglement entropy: (a) strong subadditivity, (b) SA ̸= SAc at finite temperature. There
are several important, but more complicated theories that we could not cover, but those would be
a natural extension beyond the topics covered in this paper.
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