Problem Set 3

Physics 445

Due May 17

Some abbreviations: P&S - Peskin & Schroeder

1. Consider the QED Lagrangian with the gauge choice \(\partial_\mu A^\mu = 0 \) and retain the associated ghost terms. Verify that the Lagrangian is invariant under the BRST transformation,

\[
\delta A_\mu = \epsilon \partial_\mu c, \quad \delta \psi = 0, \quad \delta c = 0, \quad \delta \bar{c} = \epsilon \partial_\mu A^\mu.
\]

Construct the associated Noether current and conserved charge. Canonically quantize the theory and express the conserved charge, \(Q \), in terms of creation and annihilation operators for the gauge and ghost fields. Verify the (anti-)commutation relations between \(Q \) and the annihilation/creation operators given in lecture.

2. Do P&S 20.1 for an example of Higgsing.

3. Consider a real scalar field of mass \(m \) coupled to photons,

\[
L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 + A\phi \epsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F_{\lambda\rho}.
\]

Use this Lagrangian to compute the tree-level decay rate of the scalar field the 2 photons.