Problem Set 2
Physics 445
Due May 12

Some abbreviations: P&S - Peskin & Schroeder

2. Consider the QED Lagrangian with the gauge choice $\partial_\mu A^\mu = 0$ and retain the associated ghost terms. Verify that the Lagrangian is invariant under the BRST transformation,

$$
\delta A_\mu = \epsilon \partial_\mu c, \quad \delta \psi = 0, \quad \delta c = 0, \quad \delta \bar{c} = \epsilon \partial_\mu A^\mu.
$$

Construct the associated Noether current and conserved charge. Canonically quantize the theory and express the conserved charge, Q, in terms of creation and annihilation operators for the gauge and ghost fields. Verify the (anti-)commutation relations between Q and the annihilation/creation operators given in lecture.

3. The usefulness of differential forms: let’s consider a p-form

$$
\omega = \frac{1}{p!} \omega_{i_1, \ldots, i_p} dx^{i_1} \cdots dx^{i_p} \equiv \omega_{|i_1, \ldots, i_p|} dx^{i_1} \cdots dx^{i_p}
$$

where vertical bars around a set of indices indicate they are summed only over $i_1 < i_2 \cdots < i_p$. Define the dual form, $\ast \omega$, which is an $n-p$ form in n dimensions as the form with components

$$
(\ast \omega)_{k_1, \ldots, k_{n-p}} = \omega_{|i_1, \ldots, i_p|} \epsilon_{i_1, \ldots, i_p, k_1, \ldots, k_{n-p}}.
$$

Here $\epsilon_{i_1, \ldots, i_n}$ is the totally anti-symmetric Levi-Civita tensor. In QED, define a 1-form gauge potential $A = A_\mu dx^\mu$ with a 2-form field strength $F = \frac{1}{2} F_{\mu\nu} dx^\mu dx^\nu$.

(i) Express F in terms of A using the exterior derivative d.

(ii) Write Maxwell’s equations in terms of $d, F,$ and $\ast F$.

(iii) Repeat this exercise for non-abelian gauge theory. Define a Lie-algebra valued 1-form $A^{a}_\mu dx^\mu$ and write F in terms of d and A. Express the equations of motion in terms of forms.

4. To get a feel for β-functions, do P&S 16.2.