1. Let’s return to an old friend the dihedral group, in particular, D_4.

(i) How many conjugacy classes are there for D_4? How many irreducible representations? Is your result consistent with the order of the group?

(ii) Construct the character table for D_4 and the irreducible representations.

(iii) Suppose we have a Hamiltonian H describing an electron moving in some crystal such that the symmetry group of the Hamiltonian is D_4. We perturb the crystal field by a perturbation H' that is not invariant under D_4 but transforms in the largest irrep that you found above, call the irrep Γ_{big}. In general, we can always decompose the perturbation into pieces that transform according to different irreps. Let’s consider 2 component wavefunctions for the electron ψ_k^i transforming in the i^{th} irrep of D_4. When is the matrix element,

$$\langle \psi_{k'}^i | H' | \psi_k^i \rangle,$$

necessarily zero? Check that this is the case explicitly for at least 2 different choices of (i, i').

(iv) The preceding observation is the basis for the use of group theory to determine selection rules. Let’s try to make a more general statement. Suppose we have a symmetry group G under which H is invariant. Perturb H by some operator H' which transforms in the Γ_p irrep. We have 2 wavefunctions ψ^i and $\psi^{i'}$ transforming in some representation Γ_i and some other representation $\Gamma_{i'}$ of G (not necessarily irreps). Under what conditions on Γ_p, Γ_i and $\Gamma_{i'}$ is the matrix element,

$$\langle \psi^{i'} | H' | \psi^i \rangle,$$

possibly non-zero?

2. To get familiar with projection operators, let’s do an example. In lecture, we constructed the projection operator for the 2-dimensional irrep of S_3 for the 3-dimensional reducible representation. There are 2 other irreps which we called 1_+ and 1_-. Construct the projection operators for these 2 irreps and check that the image of the projection operator acting on

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

has the right dimension.

Actually, in lecture, we took a short cut and computed P_2 but not each P^{ij}_2. Fill in the missing steps and compute each projection operator P^{ij}_2 for the 2-dimensional irrep. Check that

$$\sum_i P^{ii}_2$$
gives the matrix we found in class.

3. Characters are enormously useful for quickly determining which representations appear in a product of wavefunctions etc. Let us define fusion coefficients in the following way. Consider,

$$T^\mu \otimes T^\nu = \oplus_\lambda N^\lambda_{\mu\nu} T^\lambda,$$

where each T is an irrep. The $N^\lambda_{\mu\nu}$ tell us how many times T^λ appears in the tensor product. These are the fusion coefficients, and they show up in a myriad of places including addition of angular momentum.

(i) Start by showing that $\chi_{T_1 \otimes T_2}(g) = \chi_{T_1}(g) \chi_{T_2}(g)$ so characters behave nicely under tensor products.

(ii) Using this observation, show that $N^\lambda_{\mu\nu} = \langle \chi^\lambda, \chi^\mu \chi^\nu \rangle$. Here is \langle, \rangle is the inner product for characters.

(iii) We have used characters for reps of finite groups but we can also use characters for reps of Lie groups. Consider the spin j representation of $SU(2)$. Parametrize the conjugacy classes of $SU(2)$ conveniently and compute the character χ_j as a function of this parameter in the spin j representation (hint: use the fact that a unitary matrix can be diagonalized using unitary matrices).

(iv) Using the expression for the characters, χ_j, show that

$$\chi_j \chi_{j'} = \sum_{j'' = |j - j'|}^{j+j'} \chi_{j''}.$$

(v) Lastly, show that this implies the usual rule for addition of angular momentum,

$$D^j \otimes D^{j'} = \oplus_{j'' = |j - j'|}^{j+j'} D^{j''}.$$

Check that the dimensions work correctly.