Superamplitudes in $\mathcal{N} < 4$ SYM theory

(arXiv:1102.4348 Henriette Elvang, Yu-tin Huang and CP)

Cheng Peng

University of Michigan, Ann Arbor

April 30, 2011
Motivation

1. What is superamplitude?
 Encodes all “physical” scattering amplitudes that are related by SUSY as one Grassmann polynomial.

2. Why superamplitudes?
 - On-shell method, efficient computing
 - New symmetries, such as dual conformal symmetry and Yangian symmetry

3. Why $\mathcal{N} < 4$?
 Less symmetry, explore similarities and differences from $\mathcal{N} = 4$ SYM.
Tree level: Systematic truncation

- $\mathcal{N} = 4$ Pure SYM:

 $\Phi_4 = G^+ + \eta_a \lambda^a - \frac{1}{2!} \eta_a \eta_b S^{ab} - \frac{1}{3} \eta_a \eta_b \eta_c \lambda^{abc} + \eta_1 \eta_2 \eta_3 \eta_4 G^-$

 Φ_4 represents a superfield containing a combination of the leading terms in the superpotential.

- Superamplitude: $\mathcal{F}_{n,\text{MHV}} \equiv \delta^{(8)} \left(\sum |k\rangle \eta_k \right) \langle 12 \rangle \langle 23 \rangle \cdots \langle n \rangle = \frac{4}{2^4} \left(\sum_{i,j=1}^n \langle ij \rangle \eta_{ia} \eta_{ja} \right) \prod_{a=1}^{\mathcal{N}} \langle 12 \rangle \langle 23 \rangle \cdots \langle n \rangle$.

- Truncation to $\mathcal{N} = 1$:

 $\Phi_1 = G^+ + \eta \lambda^+$, (Positive helicity, setting $\eta_{2,3,4} \to 0$)

 $\Psi_1 = \eta G^- + \lambda^-$, (Negative helicity, integrating over $\eta_{2,3,4}$)

 $\mathcal{F}_{n,i,j,\text{MHV}} = (-1)^{\frac{1}{2} \mathcal{N} (\mathcal{N} - 1)} \left(\sum |k\rangle \eta_k \right) \langle 12 \rangle \langle 23 \rangle \cdots \langle n \rangle$
Tree level: Systematic truncation

- **Super-BCFW recursion relation:**
 \[\left[I, J \right] \text{-shift: } \left| \hat{I} \right\rangle = \left| I \right\rangle + z \left| J \right\rangle, \quad \left| \hat{J} \right\rangle = \left| J \right\rangle - z \left| I \right\rangle, \quad \hat{\eta}_I = \eta_I + z \eta_J \]

 \[\mathcal{F} = \sum_i \frac{\hat{F}_L^i \hat{F}_R^i}{P_i^2} \]

 "Good shift": the shifted amplitudes falloff as \(\frac{1}{z} \) (or better) when \(z \to \infty \).

 All shifts are "good" in \(\mathcal{N} = 4 \) SYM, while \([\Phi, \Psi]\) shift is "bad" when \(\mathcal{N} \leq 2 \).

Key fact

\([\Phi, \Psi]\) shift is "bad" when \(\mathcal{N} \leq 2 \)
Loop level: NOT a simple truncation

\[A^{1-\text{loop}} = \sum_i C^i_{\text{box}} I^i_{\text{box}} + \sum_i C^i_{\text{triangle}} I^i_{\text{triangle}} + \sum_i C^i_{\text{bubble}} I^i_{\text{bubble}} + R. \]

- Interested in logarithmic UV divergence \(\Rightarrow I^i_{\text{bubble}} \) only.

Upshot: UV divergence at 1-loop is closely related to the BCFW shift at tree level.
Loop level: NOT a simple truncation

\[A^{1-\text{loop}} = \sum_i C^i_{\text{box}} I^i_{\text{box}} + \sum_i C^i_{\text{triangle}} I^i_{\text{triangle}} + \sum_i C^i_{\text{bubble}} I^i_{\text{bubble}} + R. \]

- Interested in logarithmic UV divergence ⇒ \(I^i_{\text{bubble}} \) only.

\[\Phi \quad \Psi \]
\[L \quad R \quad L \quad R \]
\[\Phi \quad \Psi \quad \Phi \quad \Psi \]

- \(C^i_{\text{bubble}} \) comes from residual at \(z \to \infty \) of BCFW \([\ell_2, \ell_1]\)-shift.

- In dim-reg, \(\sum_i C^i_{\text{bubble}} = -b_0 A_{\text{tree}} \quad (\beta = -\frac{b_0}{(4\pi)^2} g^3 + \ldots) \)

Upshot

UV divergence at 1-loop is closely related to the BCFW shift divergence at tree level.
Interplay between 6D and 4D

- The 4D amplitudes can be obtained from the 6D amplitudes:
 1. 6D with \(P_4 = P_5 = 0 \) \(\Rightarrow \) 4D massless amplitudes.
 2. 6D with \(P_4, P_5 \neq 0 \) \(\Rightarrow \) 4D massive amplitudes.

- Mapping after reduction:
 \[\begin{align*}
 D = 4, \mathcal{N} = 4 & \quad \text{truncation} \\
 D = 4, \mathcal{N} = 2 & \quad \text{Half Fourier transform:} (\eta_2, \eta_3) \quad \Rightarrow \quad D = 6, \mathcal{N} = (1, 1) \quad \text{truncation} \\
 D = 4, \mathcal{N} = 2 & \quad \text{Half Fourier transform:} (\eta_2) \quad \Rightarrow \quad D = 6, \mathcal{N} = (1, 0)
 \end{align*} \]

- 6D amplitudes have no “helicity sectors”: truncation of 6D amplitudes gives a mixture of \(\mathcal{N}^K \) MHV 4D amplitudes.

Lesson

6D amplitudes provide organizational guide for 4D amplitudes
Thank You