Lecture 6: Einstein’s Gravity

Newtonian Gravity

- Newtonian Gravity exhibits two key features that will be important for us:
 - Action at a distance
 - If m_1 ejects some matter, m_2 feels change in force instantaneously
 - Inconsistent with relativity
 - The Equivalence Principle
 - The inertial mass of an object is equivalent to its gravitational mass
 \[
 \Rightarrow \text{ All objects undergo universal acceleration in a gravitational field} \quad (a_2 \text{ does not depend on } m_2)
 \]

The Equivalence Principle and the Bending of Light

- An observer in a closed elevator cannot tell the difference between inertial motion and free-fall in a gravitational field
- Einstein used this to argue that the path of light is bent in a gravitational field

- Suppose a light is shined in our elevator at the instant it is dropped and allowed to fall
- The elevator observer believes he/she is in inertial motion
 - The elevator observer must see the light travel in a straight line
 \[\rightarrow\] The building observer sees the light move downward along with the elevator
 \[\rightarrow\] The path of light is bent by gravity!
Gravitational Redshift and Time Dilation

- Now **one observer** shines a light from the bottom just as the elevator is released
 - Wavelength of light remains constant to elevator observer
 - The wavelength seen by an **observer higher up** must decrease
 - Light propagating in a gravitational field is Doppler shifted (that is, its wavelength and frequency shift)
 - Wavelength is shorter in strong gravitational fields (**blueshifted**)
 - Wavelength is longer in weak gravitational fields (**redshifted**)

- Now place an atomic clock in a strong gravitational field, say one based on oscillations of Cesium atoms
 - We observe it from a region of weak gravitational field and measure a longer period for the Cesium radiation
 → We think the clock is running slower
 - In general, clocks in strong gravitational fields tick faster than clocks in weak gravitational fields

Equivalence Principle and Curved Paths

- A free-falling reference frame is indistinguishable from an inertial reference frame
- Gravity makes observers follow curved paths instead of straight ones
 - ...but an inertial observer always believes they are moving in a straight line

⇒ **The effect of gravity is to change what it means for a path to be straight**
Gravity and Curved Spacetime

- Einstein gravity: matter (actually energy-momentum) curves space-time!
 - All observers follow *geodesic paths*, that is paths of 'shortest distance'
 - Roughly, 'distance' between 2 events is time elapsed on a clock that passes through both
 - Straight line paths are bent when spacetime is curved by gravity

- Difficult to visualize curved spacetime
- Often use *Penrose diagrams* which are a type of spacetime diagram like we saw in lecture 1
 - Light moves on diagonal lines
 - Distances scaled so points that are 'infinitely far away' can fit on the page

Black Holes

- First nontrivial solution of Einstein’s equations found by Karl Schwarzschild in 1916
- Solution displays a *singularity* and an *event horizon*
 - If a rocket ship passes the event horizon it cannot escape the singularity
 - Not even light that passes the event horizon can escape the singularity
- The Schwarzschild solution describes a *black hole*
- Gravity curves spacetime so strongly that light cannot escape from behind the event horizon
- Many puzzles regarding the physics of black holes...more next lecture
Gravitational Waves

- In Newton’s theory, changes in gravitational force communicated instantaneously
 - This was ‘action at a distance’
 - Inconsistent with relativity
- In Einstein’s theory, a moving body will generate ‘ripples’ in spacetime
 - Gravitational waves that move at speed of light

- Changes in gravitational force are communicated through these waves (similar to the role of electromagnetic waves in electromagnetism)
- Gravitational waves distort space as they propagate
 - Periodically stretch space in some directions and contract it in others
- Indirectly detected through the energy loss of binary star systems
 - Direct detection experiments underway with large interferometers
 - LIGO, VIRGO, etc

Towards Quantum Gravity?

- Surely we know how to quantize gravity now, right?
 - Gravitational wave has a ‘smallest piece’, the graviton
 - Gravity is a quantum force with the graviton as a force carrier
 - No different from the other forces of the Standard Model, right?

...if only life were that easy...

Next time: Why is Quantum Gravity so hard?!?