1. “Moose” model. Consider gauge symmetry $U(1)_1 \times U(1)_2$, with gauge coupling strengths g_1 and g_2, respectively. We also have a complex scalar, ϕ. It has charge +1 under $U(1)_1$, and charge +1 under $U(1)_2$. The scalar potential of ϕ is

$$V(\phi) = \mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2.$$

We assume $\mu^2 < 0$.

(a) Compute the masses of the gauge bosons, and find the mass eigenstates in terms of $U(1)_1 \times U(1)_2$ gauge bosons A_1^μ and A_2^μ.

(b) What is the mass of the remaining scalar particle, the "Higgs boson" h?

(c) Write down the couplings between the Higgs boson and the gauge bosons. Use mass eigenstates of the gauge bosons.

(d) Suppose we have two type of Dirac fermions ("electrons"), e_1 and e_2. e_1 is charged under $U(1)_1$ with charge -1, and it is neutral under $U(1)_2$. On the other hand, e_2 is charged under $U(1)_2$ with charge -1, and it is neutral under $U(1)_1$.

Write the Lagrangian for the fermions, including all renormalizable couplings between fermions and gauge bosons (again use the mass eigenstates), and between the fermions and ϕ.