Color Superconductivity

Overview

- Color superconductivity is predicted phase of QCD at ultra high density & low temperature
 - in particular for this talk will take $T=0$ & $\mu=m$
 - treat quarks as massless to excellent approximation
 - Symmetry $SU(3)_c \times SU(3)_L \times SU(2)_L \times U(1)_B$

- Idea: along lines of normal superconductivity
 - attractive interactions among quarks
 - \Rightarrow formation of diquark bound states
 - condensate

- Vev breaks symmetry
- Argue to diagonal subgroup
 - $SU(3)_c$ - simultaneous global flavor & color transformations.

- Called "color-flavor locked" or CFL phase

Outline:

- Argue for CFL state
 - Consequences
 - Quantitative results for gap formation
 - Not really reliable since sensitive to choice of form factor, etc...

Mainly follows A. Rajaraman & Wilczek (1999)
Color-Flavor-Locked State

- really educated guesswork as to what's energetically favorable

 - we know in this regime, quarks exert weak attraction

 \[\langle g_{i a} g_{j b} \rangle \langle \bar{g}_{i a} \bar{g}_{j b} \rangle \]

 \(i = \text{flavor} \)

 \(a = \text{color} \)

 \(\theta = \text{spin} \)

 Condensate should be \(\langle g_{i a} g_{j b} \rangle \langle \bar{g}_{i a} \bar{g}_{j b} \rangle \)

 - Argue spin 1 component will not compete w/ spin 0 component

 (consistency = 2 entire fermi surface cannot contribute sufficiently)

- parity preserving

 - simply don't see any sign of \(\gamma \), even when include

 interaction effects (see 1968 paper by e.g. Audis)

 So pick parity invariant state

 \[\langle g_{i a} g_{j b} \rangle = \langle \bar{g}_{i a} \bar{g}_{j b} \rangle \]

- color antisymmetric channel is the attractive channel

 - P flavor antisymmetric as well

 So expect something like

 \[\langle g_{i a} g_{j b} \rangle = \text{det} \cdot e_{i j} \]

 - turns out in correct solve self-consistent gap eqn & so need

 more general ansatz

 \[\langle g_{i a} g_{j b} \rangle = \mu \cdot e_{i j} + \nu \cdot \bar{e}_{i j} \]

- State not invariant under individual color or chiral flavor rotation

 or \(U(1)_a \), but is under the diagonal subgroup

 \(\otimes \) looks \(\text{SU}(3)_c \times \text{SU}(3)_c \) & run \(\otimes \) \(\text{SU}(3)_c \) to \(\text{SU}(2)_c \)

 - hence called color-flavor locked phase.
Immediate Consequences - Single particle excitations

- will see that B_u & u gaps for the 9 types of quasiparticles
 - uniform over fermi surface so no low energy single particle excitations.
- Higgs mechanism.
 - Since color locked to flavor, no local symmetries remain
 => all gluons acquire mass.
- 8 boleb chiral generators, 1 broken U(1) generator.
 - $SU(3)$ octet - & singlet of Nambu-Goldstone bosons
- $SU(4)$ broken by instantons further broken to Z_2 by the condensate.
- Quark masses would break flavor symmetry
 - give the $SU(3)$ octet small masses + diminish symmetry of condensate.
 - $U(1)$ is still masses.

Determining the Gap

- Single gluon exchange \rightarrow attractive interaction.
 - use model hamiltonian based on this color structure

$$H_z = 2K \sum (\delta_{[SS]} - \frac{1}{3} \delta_{[\pi\pi]}) \delta_{[SS]} \delta_{[\pi\pi]}$$

F symbolizes momentum dependent form factor for each leg of interaction to mock up asymptotic freedom.

$$F(p) = \left(1 + \exp\left(\frac{p^2 - \mu^2}{\Lambda^2}\right)\right)^{-1}$$

- will just kind of pick $A \mu \nu$, pretty arbitrary, so the calculation cannot be truly trusted at a quark-level, but
will hopefully give insight into what's happening.

- Now as in usual CS theory, make mean field approx

\[
\langle \delta \phi \rangle = \frac{3}{2} \left(\phi - \phi_0 \right) + \phi_0 \delta \phi \quad \text{in small}\]

We parameterize the field by

\[
\phi_{\alpha \beta} = \frac{1}{2} (\delta_{\alpha \beta} + 3 \Delta_\alpha \Phi) \delta_{\alpha \beta} + \frac{1}{2} Q_{\alpha \beta} \delta_{\alpha \beta}
\]

since $\Delta_\alpha \Phi$ will turn out to be gaps.

- After this approx the total hamiltonian becomes

\[
H = \int d^4 x \left[\left(\partial \Phi \right)^2 - m^2 \Phi^2 \right] + \frac{1}{2} \int d^4 x \left[Q_{\alpha \beta} Q_{\alpha \beta} \right]
\]

where $Q_{\alpha \beta} = \Delta_\alpha \Phi \delta_{\alpha \beta} + \frac{1}{2} (\Delta_\alpha - \Delta_\beta) \delta_{\alpha \beta}$

Quadratic form in (e), so can diagonalize to find quark particle spectrum.

- First decompose into

\[
\phi_{\alpha \beta} = \frac{1}{\sqrt{N}} \sum_{\xi} \left[\begin{array}{c} - \sin \theta \xi e^{i \varphi} \\ - \cos \theta \xi e^{i \varphi} \end{array} \right] \left(\left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right)
\]

$\xi = 1, \cdots, 9$ is color-flavor index.

Diagonalizing Q in color-flavor space, we find

\[
H = \sum_{\alpha \beta} (1 - \mu) \alpha_{\alpha \beta} Q_{\alpha \beta} + \sum_{\alpha \beta} (\mu - 1) \alpha_{\alpha \beta} Q_{\alpha \beta} + \sum_{\alpha} (1 - \mu) \beta_{\alpha} \bar{\beta}_{\alpha}
\]

\[
+ \frac{1}{2} \sum_{\alpha \beta} F(\alpha_{\alpha \beta} Q_{\alpha \beta} - \beta_{\alpha} \bar{\beta}_{\beta}) + \text{c.c.}
\]

where $\alpha_1 = \Delta, \alpha_2, \cdots, \alpha_n = \Delta$ are eigenvalues of Q.

Can be diagonalized through some unenlightening algebra, to

\[
H = \sum_{\alpha} \left(\sqrt{1 - \mu^2} + F(\Delta) Q_{\alpha} \right) \gamma_{\alpha} \gamma_{\alpha} + \left(\sqrt{\mu^2} + F(\Delta) Q_{\alpha} \right) \gamma_{\alpha} \gamma_{\alpha} + \mu \gamma_{\alpha} \gamma_{\alpha}.
\]

So we see physical gaps of $F(\Delta, 1) + F(\Delta, 0)$.
As in BCS theory, \(\Delta_1, \Delta_2 \) must satisfy a self-consistency condition that can be used to solve for them.

\[
\langle \Phi^i \Phi^j \rangle = \frac{2}{\sqrt{16}} \rho_{ij}
\]

Plug in \(\Phi \) in terms of \(\chi, \Phi^{\dagger} \) to evaluate in \(T=0 \) state,

\[
s = \frac{\imath \chi_1 \chi_2}{\sqrt{16}} = \frac{\imath \chi_1 \chi_2}{2} = 0.
\]

\[
\Rightarrow \Delta_1 + \frac{1}{2} \Delta_2 = \frac{\imath}{3} \mu G(\lambda_1), \quad \frac{1}{2} \Delta_1 = \frac{\imath}{3} \mu G(\lambda_2)
\]

\[
G(\lambda) = -\frac{1}{2} \frac{\lambda}{1 + \Phi(\lambda^2 + \Phi(\lambda^4 + \Phi(\lambda^8)))} \quad \text{(the value)}
\]

Numerical sol: Set \(\Lambda = \frac{1}{2} \), value at Chiral Gap is \(0.4 \) GeV (arbitrary).

\[\Lambda = 0.8 \text{ GeV}, \quad \mu = 0.85 \text{ GeV.}\]

We are overestimating.

Only use 1 interaction, no take half.