Thermalization and Random Matrices

Anatoly Dymarsky

University of Kentucky

Great Lakes Strings 2018

University of Chicago, April 14
Thermalization of Quantum Systems

How isolated quantum systems thermalize? Systems without additional symmetries – Eigenstate Thermalization Hypothesis

- Individual energy eigenstate is “thermal”

\[
\langle E | A | E \rangle \simeq \text{Tr}(\rho_{\text{mic}} A) \simeq \text{Tr}(e^{-\beta H} A) / \text{Tr}(e^{-\beta H})
\]

- “Eigenstate Ensemble” explains eventual thermalization

\[
\lim_{t \to \infty} \langle \Psi(t) | A | \Psi(t) \rangle = \sum_i |C_i|^2 \langle E_i | A | E_i \rangle + \\
\lim_{t \to \infty} \sum_{i \neq j} C_i^* C_j \langle E_i | A | E_j \rangle e^{-i(E_i-E_j)t} \simeq A^{\text{th}} + O(1/L)
\]
Motivation

- Thermalization after a quantum quench
 AD and Smolkin, arXiv:1709.08654

- ETH in CFT, chaotic CFTs, GGE for 2d CFTs

- Collapse of Black Holes as thermalization

- Thermalization in SYK, connection to random matrices and quantum chaos
Eigenstate Thermalization Hypothesis

ETH ansatz

\[\langle E_i | A | E_j \rangle = A^{\text{eth}}(E) \delta_{ij} + \Omega^{-1/2} f(E, \omega) r_{ij} \]

\[E = (E_i + E_j)/2, \quad \omega = E_i - E_j \]

\[A^{\text{eth}}, f \] depend on energy density \(E/V \)

Deutsch’91 Srednicki’94; 99 Rigol, Dunjko, Olshanii’08

Meaning of form-factor \(f(\omega) \):

\[\langle A(t) A(0) \rangle_\beta = \int d\omega f^2(E, \omega) e^{-i\omega t} \]
Chaoticity, ETH and Random Matrices

- Chaotic behavior: Hamiltonian = Random Matrix (WD distribution of energy levels)

- ETH \approx Eigenstates are random vectors

- “random” behavior of r_{ij}, i.e. A_{ij} with $i \neq j$ (empirical evidence)

- universal “ergodic” behavior of observables $\langle \Psi | A(t) | \Psi \rangle$ for large t (after thermalization)? “structureless” or Haar-invariant A_{ij}

D’Alessio, Kafri, Polkovnikov, Rigol’15
Cotler et al., ’16, ’17
ETH reduces to RMT?

- For small $\omega \leq \tau^{-1}$, $f(\omega)$ is constant and r_{nm} is GOE

$$\langle E_i | A | E_j \rangle = A^{\text{eth}} \delta_{nm} + \Omega^{-1/2} f(\omega) r_{ij}$$

D’Alessio, Kafri, Polkovnikov, Rigol’15

- Gaussian distribution of r_{ii} and r_{ij}

 Beugeling, Moessner, Haque’14, . . .

- Ratio $\langle r_{ii}^2 \rangle = 2 \langle r_{ij}^2 \rangle$

 AD and Liu, arxiv:1702.07722, Mondaini, Rigol’17

What is the timescale when ETH reduces to RMT?

Is it $\Delta E_{RMT} = \tau^{-1}$-inverse Thouless time
Diffusive system thermalizes within Thouless time $\tau \sim L^2$ necessary for the slowest diffusive modes to propagate across the system. After time $t \sim \tau$ the system is fully ergodic (and ETH reduces to RMT).
The key idea: dynamics of “slow states” constraints
\[\Delta E_{\text{RMT}} \]
Classical diffusion in 1D

\[
\frac{\partial \rho}{\partial t} = D \frac{\partial^2 \rho}{\partial x^2}
\]

\[
\rho(t, x) = \sum_n c_n \cos \left(\frac{\pi n x}{L} \right) e^{-tD(\pi n)^2/L^2}
\]
Quasi-classical slow states

- there are states Ψ such that $\langle \Psi | \delta A(t) | \Psi \rangle$ remains of order one long time $t \sim \tau$, where $\delta A = A - A^{\text{eth}}$

$$\langle \Psi | \delta A(t) | \Psi \rangle \sim e^{-t/\tau}$$

- let's consider the deviation $\delta A(t)$ averaged over time T

$$\int dt \langle \Psi | \delta A(t) | \Psi \rangle \frac{\sin(\pi t/T)}{\pi t} \approx \frac{1}{T} \int_0^T dt \langle \Psi | \delta A(t) | \Psi \rangle \sim \frac{\tau}{T}$$

- for any local system $\tau \geq L$, for a diffusive system $\tau \sim L^2$, for non-local SYK system $\tau \sim ???$
From time domain to energy domain and back

Idea: to go from energy domain to time domain

\[
\int dt \frac{\sin(\pi t/T)}{t\pi} \langle \Psi(t) | \delta A | \Psi(t) \rangle = \langle \Psi(0) | \delta A_T | \Psi(0) \rangle
\]

\[
(\delta A_T)_{ij} = \begin{cases}
\delta A_{ij} : |\omega| \leq 1/T \\
0 : |\omega| > 1/T
\end{cases}
\]

\[
\delta A_T = \begin{bmatrix}
* & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & * \\
\end{bmatrix}
\]

\[\delta A_T\] is a matrix with band structure: within the diagonal band it coincides with \(A_{ij}\) with the diagonal \(A^\text{eth}_{ij}\) part removed, and zero outside
Upper bound on λ of band matrix

- Value of $\langle \Psi(0)|\delta A_T|\Psi(0)\rangle$ is bounded by largest eigenvalue $\lambda(\delta A_T)$ of δA_T

- Let's introduce $\lambda(\Delta E, E)$ for the largest (by absolute value) eigenvalue of the sub-matrix centered at E and of size $2\Delta E$

$$\lambda(\delta A_T) \leq 2\lambda(E', 2/T) + \lambda(E'', 1/T)$$
Band Random Matrices

- full band matrix δA_T may not be random even when $1/T$ is very small (band is narrow) - because of possible correlations along the diagonal

- by assumption, when $2/T \leq \Delta E_{RMT}$, quadratic sub-matrices of size $\Delta E \leq 2/T$ or smaller are random

- assuming fluctuations r_{ij} are independent

$$\lambda^2(\Delta E) \leq 8 \int_0^{1/T} d\omega |f(\omega)|^2$$

AD and Liu arxiv:1702.07722

this bound is uniform for all sizes $\Delta E \geq 1/T$ and only depends on the band-width $1/T$
Upper bound on ΔE_{RMT} from slow states

- for sufficiently large T, such that $T \Delta E_{\text{RMT}} \geq 2$

$$\max_{\Psi} \left| \int dt \frac{\sin(\pi t/T)}{t \pi} \langle \Psi(t) | \delta A | \Psi(t) \rangle \right|^2 \leq \int dt \frac{\sin(\pi t/T)}{t \pi} \langle A(t) A(0) \rangle_{\beta}$$

- 2pt function approaches L-independent asymptotic form in the thermodynamic limit $\langle A(t) A(0) \rangle_{\beta} \sim (t_D/t)^{\alpha}$

for 1D diffusive system $\alpha = 1/2$; when the system is finite

$$\int dt \frac{\sin(\pi t/T)}{t \pi} \langle A(t) A(0) \rangle_{\beta} \sim \left\{ \begin{array}{ll} \sqrt{t_D/T} & T \leq \tau \\ \sqrt{t_D \tau}/T & T \geq \tau \end{array} \right.$$

- taking Ψ to be a slow diffusive mode $\langle \Psi | \delta A(t) | \Psi \rangle \sim e^{-t/\tau}$

$$\left(\frac{\tau}{T} \right)^2 \leq \frac{\sqrt{t_D \tau}}{T} \Rightarrow T \geq L^3$$
Conclusions

- The “Random Matrix” time-scale $\Delta E_{\text{RMT}}^{-1}$, when ETH reduces to Random Matrix Theory, is parametrically longer than the Thouless time.

- What are the observational signatures of $\Delta E_{\text{RMT}}^{-1}$? Is there “ergodicity” and “universality” of $\langle \Psi | A(t) | \Psi \rangle$, or in the end of the story $\Delta E_{\text{RMT}} = 0$?

 (Hamiltonian = Random Matrix; observable is never random, rather some matrix written in random basis)

- Given that A_{ij} is not “structureless” at Thouless energy scale, what happens at the “end of thermalization” $t \sim \tau$?
What’s the Big Picture?

- A new picture of thermalization with the new “Random Matrix” time-scale \(\Delta E_{\text{RM}}^{-1} \)

- The take home point: random matrices are not adequate to describe slow thermalization dynamics. What is the relation between Thouless time defined through spectrum properties and Thouless time defined as thermalization time for many-body systems?

- What are the relevant energy/timescales for the non-local SYK model and what is their bulk interpretation?