Sally Dawson, BNL
Electroweak Symmetry Breaking
University of Chicago, 2011

• Introduction to Electroweak Symmetry Breaking
 – Review of the SU(2) x U(1) Electroweak theory
 – Constraints from Precision Measurements
 – Experimental Searches for the Higgs

• Theoretical problems with the Standard Model

• Beyond the SM
 – Why are we sure there is physics BSM?
 – What do the LHC and Tevatron tell us?
Exciting times: Large Hadron Collider

- proton-proton collider at CERN running now!
- 7 TeV total energy
- Total integrated luminosity \(\sim 2.5 \text{ fb}^{-1} \)
- Typical energy of quarks and gluons 1-2 TeV

If there is a SM Higgs boson, we expect it soon!
What we know

• The photon and gluon appear to be massless
• The W and Z gauge bosons are heavy
 – $M_W = 80.399 \pm 0.023$ GeV
 – $M_Z = 91.1875 \pm 0.0021$ GeV
• There are 6 quarks
 – $M_t = 172.9 \pm 0.9$ GeV
 – $M_t \gg$ all the other quark masses
• There appear to be 3 distinct neutrinos with small but non-zero masses
• The pattern of fermions appears to replicate itself 3 times
 – Why not more?
Abelian Higgs Model

• Why are the W and Z boson masses non-zero?
• U(1) gauge theory with single spin-1 gauge field, A_μ

\[
L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}
\]

\[
F_{\mu\nu} = \partial_\nu A_\mu - \partial_\mu A_\nu
\]

• U(1) local gauge invariance:

\[
A_\mu(x) \rightarrow A_\mu(x) - \partial_\mu \eta(x)
\]

• Mass term for A would look like:

\[
L = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_\mu A^\mu
\]

• Mass term violates local gauge invariance
• We understand why $M_A = 0$

Gauge invariance is guiding principle
Non-Abelian Higgs Mechanism

- Vector fields $A^{a}_{\mu}(x)$ and scalar fields $\varphi_{i}(x)$ of SU(N) group

$$
\phi = \begin{pmatrix}
\phi_1 \\
\vdots \\
\phi_N
\end{pmatrix}
$$

$$
L_{\Phi} = (D_{\mu} \Phi)^{+} (D^{\mu} \Phi) - V(\Phi),
$$

$$
V(\Phi) = \mu^{2} \Phi^{+} \Phi + \lambda (\Phi^{+} \Phi)^{2}
$$

- L is invariant under the non-Abelian symmetry:

$$
\phi_i \rightarrow (1 - i \eta^{a} \tau^{a})_{ij} \phi_j
$$

$$
D_{\mu} \phi = \left(\partial_{\mu} - i g \tau^{a} A^{a}_{\mu} \right) \phi
$$

- τ_{a} are group generators, $a=1…N^{2}-1$ for SU(N)

For SU(2): $\tau^{a}=\sigma^{a}/2$ \hspace{1cm} σ are Pauli matrices
Non-Abelian Higgs Mechanism, 2

\[D_\mu \phi = \left(\partial_\mu - ig \tau^a A^a_\mu \right) \phi \]

\[(D_\mu \Phi)^+(D^\mu \Phi) \rightarrow \ldots + g^2 (\tau^a \phi^+)_i (\tau^b \phi)_i A^a_\mu A^{b\mu} + \ldots \]

\[\rightarrow \phi \rightarrow 0 \ldots + g^2 (\tau^a \phi^+)_i (\tau^b \phi^+)_i A^a_\mu A^{b\mu} + \ldots \]

- \(\tau^a \phi^+_0 \neq 0 \)
 \(\Rightarrow \) Massive vector boson + Goldstone boson

- \(\tau^a \phi^+_0 = 0 \)
 \(\Rightarrow \) Massless vector boson + massive scalar field

Simplest, but not the only way, to give gauge bosons mass
Standard Model Synopsis

- **Group:** $SU(3) \times SU(2) \times U(1)$
 - QCD
 - Electroweak

- **Gauge bosons:**
 - $SU(3)$: G_{μ}^i, $i=1\ldots8$
 - $SU(2)$: W_{μ}^i, $i=1,2,3$
 - $U(1)$: B_{μ}

- **Gauge couplings:** g_s, g, g'

- **Complex SU(2) Higgs doublet:** Φ

Minimal Model
SM Higgs Mechanism

- Standard Model includes complex Higgs SU(2) doublet
 \[\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} \]

- With SU(2) x U(1) invariant scalar potential
 \[V = \mu^2 \Phi^+ \Phi + \lambda (\Phi^+ \Phi)^2 \quad \text{Invariant under } \Phi \rightarrow -\Phi \]

- If \(\mu^2 < 0 \), then spontaneous symmetry breaking
- Minimum of potential at:
 \[\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} \quad \Phi \rightarrow e^{i\varphi^a \sigma^a / v} \begin{pmatrix} 0 \\ \frac{h + v}{\sqrt{2}} \end{pmatrix} \]

 - Choice of minimum breaks gauge symmetry
More on SM Higgs Mechanism

• Couple Φ to SU(2) x U(1) gauge bosons (W_i^μ, i=1,2,3; B^μ)

$$L_S = (D_\mu \Phi)^+ (D^\mu \Phi) - V(\Phi)$$

$$D_\mu = \partial_\mu - i \frac{g}{2} \sigma^i W^i_\mu - i \frac{g'}{2} B_\mu$$

• Gauge boson mass terms from:

$$(D_\mu \Phi)^+ D^\mu \Phi \rightarrow \ldots + \frac{1}{8}(0, v)(gW^a_\mu \sigma^a + g'B^a_\mu)(gW^b_\mu \sigma^b + g'B^b_\mu) \begin{pmatrix} 0 \\ v \end{pmatrix} + \ldots$$

$$\rightarrow \ldots + \frac{v^2}{8} \left(g^2 (W^1_\mu)^2 + g^2 (W^2_\mu)^2 + (-gW^3_\mu + g'B_\mu)^2 \right) + \ldots$$
More on SM Higgs Mechanism

• With massive gauge bosons:

\[W_\mu^\pm = \left(\frac{W_\mu^1 \mp W_\mu^2}{\sqrt{2}} \right) \]

\[Z_\mu^0 = \left(\frac{gW_\mu^3 - g'B_\mu}{\sqrt{g^2 + g'^2}} \right) \]

\[M_W = \frac{g_\nu}{2} \]

\[M_Z = \sqrt{g^2 + g'^2} \frac{\nu}{2} \]

• Orthogonal combination to Z is massless photon

\[A_\mu^0 = \frac{g'W_\mu^3 + gB_\mu}{\sqrt{g^2 + g'^2}} \]
More on SM Higgs Mechanism

• Weak mixing angle defined:

\[Z = - \sin \theta_W B + \cos \theta_W W^3 \]
\[A = \cos \theta_W B + \sin \theta_W W^3 \]

\[\cos \theta_W = \frac{g}{\sqrt{g^2 + g'^2}} \quad \sin \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}} \]

→ Natural Relationship: \(M_W = M_Z \cos \theta_W \)

\[\rho = \frac{M_W}{M_Z \cos \theta_W} = 1 \]
W, Z, Higgs Couplings

• Lagrangian in terms of massive gauge bosons and Higgs boson:

\[L = g M_W W^{+\mu} W^-_\mu h + \frac{g M_Z}{\cos \theta_W} Z^\mu Z_\mu h \]

• Higgs couples to gauge boson mass

• Spontaneous symmetry breaking gives W/Z mass \(\Rightarrow \) longitudinal polarization
Muon decay

- Consider $\nu_\mu e \rightarrow \mu \nu_e$

- Fermi Theory:

- EW Theory:

For $|k| \ll M_W$, $2\sqrt{2}G_F = g^2/2M_W^2$
Higgs Parameters

• G_F measured precisely

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} = \frac{1}{2v^2}$$

$$v^2 = (\sqrt{2}G_F)^{-1} = (246 GeV)^2$$

• Higgs potential has 2 free parameters, μ^2, λ

$$V = \mu^2 \Phi^+ \Phi + \lambda(\Phi^+ \Phi)^2$$

• Trade μ^2, λ for v^2, M_h^2

$$V = M_h^2 \frac{h^2}{2} + M_h^2 \frac{h^3}{2v} + M_h^2 \frac{h^4}{8v^2}$$

$$v^2 = -\frac{\mu^2}{2\lambda}$$

$$M_h^2 = 2v^2 \lambda$$

– Large $M_h \rightarrow$ strong Higgs self-coupling
– A priori, Higgs mass can be anything
What about fermion masses?

• Fermion mass term:
 \[L = m \bar{\Psi} \Psi = m \left(\bar{\Psi}_L \Psi_R + \bar{\Psi}_R \Psi_L \right) \]

• Left-handed fermions are SU(2) doublets
 \[Q_L = \begin{pmatrix} u \\ d \end{pmatrix} \]

• Scalar couplings to fermions:
 \[L_d = -\lambda_d \bar{Q}_L \Phi d_R + h.c. \]

• Effective Higgs-fermion coupling
 \[L_d = -\lambda_d \frac{1}{\sqrt{2}} (\bar{u}_L, \bar{d}_L) \begin{pmatrix} 0 \\ v + h \end{pmatrix} d_R + h.c. \]

• Mass term for down quark:
 \[\lambda_d = \frac{M_d \sqrt{2}}{v} \]
Fermion Masses, 2

• M_u from $\Phi_c = i\sigma_2 \Phi^*$ (not allowed in SUSY)

\[
\Phi_c = \begin{pmatrix}
\phi^0 \\
-\phi^-
\end{pmatrix}
\]

\[
L = -\lambda_u \overline{Q}_L \Phi_c u_R + h c
\]

• For 3 generations, $\alpha, \beta = 1, 2, 3$ (flavor indices)

\[
L_Y = -\frac{(v + h)}{\sqrt{2}} \sum_{\alpha, \beta} \left(\lambda_{u}^{\alpha \beta} \overline{u}_L^\alpha u_R^\beta + \lambda_{d}^{\alpha \beta} \overline{d}_L^\alpha d_R^\beta \right) + h.c.
\]

* SUSY always has at least 2 Higgs doublets
Fermion masses, 3

- Unitary matrices diagonalize mass matrices

\[
\begin{align*}
 u_L^\alpha &= U^\alpha_\beta u_L^{m\beta} \\
 d_L^\alpha &= U^\alpha_\beta d_L^{m\beta} \\
 u_R^\alpha &= V^\alpha_\beta u_R^{m\beta} \\
 d_R^\alpha &= V^\alpha_\beta d_R^{m\beta}
\end{align*}
\]

- Yukawa couplings are \textit{diagonal} in mass basis
- No flavor changing effects in Higgs sector
- Not necessarily true in models with extended Higgs sectors
Review of Higgs Couplings

• Higgs couples to fermion mass
 – Largest coupling is to heaviest fermion
 \[L = -\frac{m_f}{v} \bar{f}f h = -\frac{m_f}{v} (\bar{f}_L f_R + \bar{f}_R f_L) h \]
 – Top-Higgs coupling plays special role?
 – No Higgs coupling to neutrinos
• Higgs couples to gauge boson masses
 \[L = g M_W W^{+\mu} W^-_{\mu} h + \frac{g M_Z}{\cos \theta_W} Z^{\mu} Z_{\mu} h + \]
• Only free parameter is Higgs mass!
Basics of Radiative Corrections

- Four free parameters in gauge-Higgs sector \((g, g', \mu, \lambda)\)
 - Conventionally chosen to be
 - \(\alpha = 1/137.0359895(61)\)
 - \(G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}\)
 - \(M_Z = 91.1875 \pm 0.0021 \text{ GeV}\)
 - \(M_h\)
 - Express everything else in terms of these parameters

\[
\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_w^2} = \frac{\pi\alpha}{2 \left(1 - \frac{M_w^2}{M_Z^2}\right) M_w^2} \Rightarrow \text{Predicts } M_W
\]
Inadequacy of Tree Level Calculations

• Mixing angle is predicted quantity
 – On-shell definition \(\cos^2 \theta_W = \frac{M_W^2}{M_Z^2} \)
 – Predict \(M_W \)

\[
M_W^2 = \pi \sqrt{2} \frac{\alpha}{G_F} \left(1 - \frac{4\pi\alpha}{\sqrt{2} G_F M_Z^2} \right)^{-1}
\]

• Plug in numbers:
 • \(M_W \) predicted = 80.939 GeV
 • \(M_W \) experimental = 80.399 \(\pm \) 0.023 GeV

– Need to calculate beyond tree level
Modification of tree level relations

\[G_F = \frac{\pi \alpha}{\sqrt{2} M_w^2 \sin^2 \theta_W} \left(\frac{1}{1 - \Delta r} \right) \]

- \(\Delta r \) is a physical quantity which incorporates 1-loop corrections

- Contributions to \(\Delta r \) from top quark and Higgs loops

\[\Delta r^t = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2} \left(\frac{\cos^2 \theta_W}{\sin^2 \theta_W} \right) \]

\[\Delta r^h = \frac{11G_F M_W^2}{24\sqrt{2}\pi^2} \left(\ln \frac{M_h^2}{M_W^2} \right) \]

Extreme sensitivity of precision measurements to \(m_t \)

* Lots of other corrections from gauge boson loops, etc
Masses inferred from precision measurements and Higgs searches*

* Includes LHC searches
Higgs Boson

- Standard Model Higgs expected to be light

\[\Delta \chi^2 = 4 \] gives 95% confidence level limit

- This assumes the Standard Model!
Higgs Limits

• From Gfitter (2011)
 – If you don’t include direct search limits for Higgs, 95% CL upper bound: $M_h < 169$ GeV
 – If you include LEP, Tevatron, LHC limits, 95% CL upper bound: $M_h < 143$ GeV
 – Test of consistency of Standard Model

Not hard to fit bounds with new physics
http://gfitter.desy.de/
Higgs Branching Ratios

![Graph showing branching ratios for Higgs boson decays into various products, with axes labeled as Branching ratios and M_h (GeV). The graph includes curves for bb, WW, ZZ, ττ, gg, cc, γγ, and Zγ.]
More Branching Ratios
Total Higgs Width

- Small M_h, Higgs is narrower than detector resolution
- As M_h becomes large, width also increases
 - No clear resonance
 - For $M_h \approx 1.4$ TeV, $\Gamma_{\text{tot}} \approx M_h$

\[
\Gamma(h \rightarrow W^+W^-) \approx \frac{\alpha}{16\sin^2\theta_W} \frac{M_h^3}{M_W^2} \\
\approx 330\text{GeV} \left(\frac{M_h}{1\text{TeV}}\right)^3
\]
Higgs production at Hadron Colliders

• Many possible production mechanisms; Importance depends on:
 – Size of production cross section
 – Size of branching ratios to observable channels
 – Size of background
• Importance varies with Higgs mass
• Need to see more than one channel to establish Higgs properties and verify that it is a Higgs boson
Production Mechanisms in Hadron Colliders

• Gluon fusion
 – Largest rate for all M_h at LHC and Tevatron
 – Gluon-gluon initial state
 – Sensitive to top quark Yukawa λ_t

In Standard Model, b-quark loop contribution small

Counts number of heavy fermions
Gluon Fusion

- Lowest order cross section:
 - $\tau_q = 4m_q^2/M_h^2$
 - Light Quarks: $F_{1/2} \rightarrow (m_b/M_h)^2 \log^2(m_b/M_h)$
 - Heavy Quarks: $F_{1/2} \rightarrow -4/3$

$$\hat{\sigma}_{gg \rightarrow h}(\hat{s}) = \frac{\alpha_s(\mu_R)^2}{1024\pi^2} \left| \sum_q F_{1/2}(\tau_q) \right|^2 \delta(1 - \frac{M_h^2}{\hat{s}})$$

- Rapid approach to heavy quark limit: Counts number of heavy fermions
- NNLO corrections calculated in heavy top limit
Gluon Fusion

• Integrate parton level cross section with gluon parton distribution functions:
 \[\hat{\sigma}_{gg \to h} = C_0 \delta \left(1 - \frac{M_h^2}{\hat{s}}\right) \]
 \[\hat{s} = x_1 x_2 S \]
 \[\sigma(pp \to h) = \int dx_1 dx_2 g(x_1, \mu_F) g(x_2, \mu_F) \hat{\sigma}_{gg \to h}(x_1 x_2 S) \]

 \[\sigma(pp \to h) = C_0 \int_{M_h^2/S}^{x_1} dx_1 g(x_1, \mu_F) g\left(\frac{M_h^2}{Sx_1}, \mu_F\right) \]

 \[C_0 \to \frac{\alpha_s(\mu_R)^2}{576\pi v^2} \]

 – \(S \) is hadronic center of mass energy

• Rate depends on \(\mu_R, \mu_F \) at \(O(\alpha_s^3) \)
 – \(\mu_R, \mu_F \) arbitrary renormalization/factorization scales
 – Numerically significant

• Uncertainty from gluon parton distribution functions
Higher order corrections to $gg \rightarrow h$

Rates depend on renormalization scale, $\alpha_s(\mu_R)$, and factorization scale, $g(\mu_F)$

Bands show $.5M_h < \mu < 2M_h$

LO and NLO μ dependence bands don’t overlap

μ dependence used as estimate of theoretical uncertainty

$K \equiv \frac{\sigma_{NLO}}{\sigma_{LO}}$

These corrections are large!
Vector Boson Fusion

- \(W^+W^- \rightarrow X \) is a real process: \(\sigma_{pp\rightarrow WW\rightarrow X}(s) = \int dz \left. \frac{dL}{dz} \right|_{pp/WW} \sigma_{WW\rightarrow X}(zs) \)
- Rate increases at large \(s \): \(\sigma \approx (1/ M_W^2) \log(s/M_W^2) \)
- Integral of cross section over final state phase space has contribution from \(W \) boson propagator:

\[
\int \frac{d\theta}{(k^2 - M_W^2)^2} \approx \int \frac{d\theta}{(2EE'(1-\cos \theta) + M_W^2)^2}
\]

Peaks at small \(\theta \)

- Outgoing jets are mostly forward and can be tagged

\(V \)

\(h \)

\(k=W,Z \) momentum
W(Z)-strahlung

- W(Z)-strahlung ($q\bar{q} \rightarrow Wh, Zh$) important at Tevatron
 - Same couplings as vector boson fusion
 - Rate proportional to *weak* coupling
- Theoretically very clean channel
Producing the Higgs at the Tevatron

NNLO or NLO rates

\[\frac{M_h}{2} < \mu < \frac{M_h}{4} \]
Higgs at the Tevatron

• Largest rate, \(gg \rightarrow h, h \rightarrow bb \), is overwhelmed by background

\[\sigma(gg \rightarrow h) \sim 1 \text{ pb} \ll \sigma(bb) \]
Looking for the Higgs at the Tevatron

- **High mass:** Look for $h \rightarrow WW^*$
 Large $gg \rightarrow h$ production rate

- **Low Mass:** $h \rightarrow bb$, Huge QCD bb background
 Use associated production with W or Z
Tevatron Higgs Exclusion

Limits normalized to Standard Model predictions

Tevatron Exclusion: [100 GeV < M_h < 109 GeV], [156 GeV < M_h < 177 GeV]
Gluon fusion counts generations

- 4^{th} generation (b',t') increases rate by factor of 9

Look for $gg \rightarrow h \rightarrow W^+W^-$

Excludes $124 \text{ GeV} < M_h < 286 \text{ GeV}$ if heavy 4^{th} generation
Production Mechanisms at the LHC

Bands show scale dependence

All important channels calculated to NLO or NNLO
Do some numbers…

• ATLAS and CMS have ~ 2.5 fb⁻¹ of data
• For $M_h=120$ GeV:
 – σ(gluon fusion) = 17 pb
 – 42,500 Higgs events
 – But we have to see them:
 • Branching ratio $h\rightarrow\gamma\gamma = 2 \times 10^{-3} \Rightarrow 85$ events
 • Branching ratio $h\rightarrow$4 leptons = 8×10^{-5} ($l=e,\mu$) \Rightarrow 3.4 events
• For $M_h=180$ GeV:
 – σ(gluon fusion) = 7 pb
 – 17,500 Higgs events
 • Branching ratio $h\rightarrow\gamma\gamma = 1 \times 10^{-4} \Rightarrow 1.75$ events
 • Branching ratio $h\rightarrow$4 leptons = 3×10^{-4} ($l=e,\mu$) \Rightarrow 5.2 events

Event numbers further reduced by detector efficiency…
Search Channels at the LHC

$gg \rightarrow h \rightarrow \gamma \gamma$
- Small BR ($10^{-3} - 10^{-4}$)
- Only measurable for $M_h < 140$ GeV

• Largest Background: QCD continuum production of $\gamma \gamma$
• Also from γ-jet production, with jet faking γ, or fragmenting to π^0
• Fit background from data

$gg \rightarrow h \rightarrow bb$ has huge QCD background: Must use rare decay modes of h
$h \rightarrow \gamma \gamma$

$M_h = 120$ GeV; $L = 100$ fb$^{-1}$

Monte Carlo predictions

Signal + background

Background subtracted

Data
Higgs Decays to Photons

- Dominant contribution is W loops
- Contribution from top is small

\[\Gamma(h \rightarrow \gamma\gamma) \approx \frac{\alpha^3}{256\pi^2 s_w^2 M_h^2 M_W^2} \left(7 - \frac{16}{9} + \ldots \right)^2 \]
h\rightarrow\gamma\gamma

- Sensitive to new physics in loops

Factor of 5-10 from SM sensitivity
Golden Channel: $h \rightarrow ZZ \rightarrow 4$ leptons

- Reconstruct Higgs mass

Monte Carlo predictions

- Below $M_h \sim 130$ GeV, rate is too small for discovery
What about $h \rightarrow W^+W^-$?

- Large rate (good)
- Look for $W \rightarrow l\nu$
 - Can’t reconstruct mass peak (bad)
- Background from $q\bar{q} \rightarrow Z^*$
 $\rightarrow W^+W^-$ (vector decay)
- Signal from $gg \rightarrow h \rightarrow W^+W^-$ (scalar decay)
 - Angular distributions help

![Graph showing signal and background events](image-url)
Limit from $h \rightarrow W^+W^-$

- CMS: $147 < M_h < 194$ GeV ruled out at 95% cl
- SM Higgs boson expected sensitivity $136 < M_h < 200$ GeV

Source of rumors, blog posts, etc....
Many Channels contribute to Limits

\[[146 < M_h < 232 \text{ GeV}, 256 < M_h < 282, 296 < M_h < 466 \text{ GeV}] \]
Higgs Limits from the LHC

95% CL exclusion:

[145< \(m_h \) <216 Gev, 226< \(m_h \) < 288, 310< \(m_h \) <440 GeV] CMS
If the SM Higgs exists, we’ll know soon

<table>
<thead>
<tr>
<th>ATLAS + CMS (\approx 2 \times) CMS</th>
<th>95% CL exclusion</th>
<th>3(\sigma) sensitivity</th>
<th>5(\sigma) sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fb(^{-1})</td>
<td>120 - 530</td>
<td>135 - 475</td>
<td>152 - 175</td>
</tr>
<tr>
<td>2 fb(^{-1})</td>
<td>114 - 585</td>
<td>120 - 545</td>
<td>140 - 200</td>
</tr>
<tr>
<td>5 fb(^{-1})</td>
<td>114 - 600</td>
<td>114 - 600</td>
<td>128 - 482</td>
</tr>
<tr>
<td>10 fb(^{-1})</td>
<td>114 - 600</td>
<td>114 - 600</td>
<td>117 - 535</td>
</tr>
</tbody>
</table>
Is it a Higgs?

- How do we know what we’ve found?
- Measure couplings to fermions & gauge bosons
 \[
 \frac{\Gamma(h \to b\bar{b})}{\Gamma(h \to \tau^+\tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2}
 \]
- Measure spin/parity
 \[J^{PC} = 0^{++} \]
- Measure self interactions
 \[V = \frac{M_h^2}{2}h^2 + \frac{M_h^2}{2\nu}h^3 + \frac{M_h^2}{8\nu^2}h^4 \]
Can we reconstruct the Higgs potential?

\[V = \frac{M_h^2}{2} h^2 + \lambda_3 v h^3 + \frac{\lambda_4}{4} h^4 \]

• Fundamental test of model!

• We have no idea how to measure \(\lambda_4 \)
Within the next 1-2 years, we should know whether or not a SM-like Higgs exists
We can already put meaningful limits on many models
The fun is just beginning